Automated process adjustments of chip cutting operations using neural network and statistical approaches
نویسندگان
چکیده
This research explores the automated process adjustments of chip cutting operations by using neural network and statistical approaches in a computer-aided vision system. Multilayer ceramic capacitors (MLCC), owing to their excellent electronic characteristics, are applied in the design of high-density PC boards. The excellences of MLCCs are accomplished through rigorous controlling of every production step, especially the accuracy-demanding chip cutting operation. This research applies computer vision techniques to find mass centers of chips, locate cutting lines and calculate cutting distances for the automated, precise, and high-speed cutting of MLCCs. The statistical bounded adjustment method with response surface methodology and the radial basis function network model are proposed to solve the cutting deviation problems and to timely and quantitatively adjust the process towards the target values. Two common kinds of process deviations, shift and trend deviations, are explored in this research. Experimental results show that the statistical bounded adjustment and the radial basis function network, respectively, increase the effective adjustment rates of cutting deviations by 35% and 60% more than the current cutting method.
منابع مشابه
Optimization of Material Removal Rate in Electrical Discharge Machining Alloy on DIN1.2080 with the Neural Network and Genetic Algorithm
Electrical discharge machining process is one of the most Applicable methods in Non-traditional machining for Machining chip in Conduct electricity Piece that reaching to the Pieces that have good quality and high rate of machining chip is very important. Due to the rapid and widespread use of alloy DIN1.2080 in different industry such as Molding, lathe tools, reamer, broaching, cutting guillot...
متن کاملChip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”
The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملCar paint thickness control using artificial neural network and regression method
Struggling in world's competitive markets, industries are attempting to upgrade their technologies aiming at improving the quality and minimizing the waste and cutting the price. Industry tries to develop their technology in order to improve quality via proactive quality control. This paper studies the possible paint quality in order to reduce the defects through neural network techniques in au...
متن کاملInfluence of Water Cooling on Orthogonal Cutting Process of Ti-6Al-4V Using Smooth-Particle Hydrodynamics Method
Temperature control during the cutting process with different parameters such as cutting velocity and applying water cooling is essential to decrease the cutting force, increase the life of the cutting tool and decrease the machined surface temperature of work-piece. In this research, the temperature of machined surface and the chip-tool interface in orthogonal cutting process of Ti-6Al-4V were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009